Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2.
نویسندگان
چکیده
This study investigated the effect of ferulic acid (FA) on the up-regulation of heme oxygenase-1 (HO-1) in lymphocytes and the molecular mechanisms involved. Lymphocytes were treated with FA (0.001-0.1 μM) for certain times. Cell viability, the activity and level of expression of HO-1, and signal pathways were analyzed. FA significantly upregulated HO-1 expression both at the level of mRNA and protein in lymphocytes. Moreover, FA induced NF-E2-related factor (Nrf2) nuclear translocation and transcriptional activity, which is upstream of FA induced HO-1 expression. In addition, lymphocytes treated with FA exhibited activation of extracellular regulated kinase (ERK) and treatments with U0126 (an ERK kinase inhibitor) attenuated the FA induced activation of Nrf2, resulting in a decrease in HO-1 expression. Zinc protoporphyrin (ZnPP, a HO-1 inhibitor) markedly suppressed cytoprotection from radiation-induced cell damage by FA. Results suggested that the ERK signaling pathway controlled the anti-oxidation of FA by regulating the expression of the antioxidant enzyme HO-1.
منابع مشابه
Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کاملFerulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways.
Ferulic acid (FA) has been demonstrated to have a remarkable antioxidant activity, the mechanism of FA of protecting human umbilical vein endothelial cells (HUVECs) from radiation induced oxidative stress was investigated in the present study. The oxidative protection of FA was assessed by cellular glutathione (GSH) content, nicotinamide adenine dinucleotide phosphate (NADPH) levels, and reacti...
متن کاملSimvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer
Statin has been known not only as their cholesterol-lowering action but also on their pleiotropic effects including anti-inflammatory and anti-oxidant as well as anti-cancer effect. Nrf2 (NF-E2-related factor 2) is a transcription factor to activate cellular antioxidant response to oxidative stress. There are little known whether statins affect activation of Nrf2 and Nrf2 signaling pathway in c...
متن کاملTryptanthrin protects hepatocytes against oxidative stress via activation of the extracellular signal-regulated kinase/NF-E2-related factor 2 pathway.
Tryptanthrin [6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline], originally isolated from Isatidis radix, has been characterized as having anti-microbial and anti-tumor activities. It is well-known that excess oxidative stress is one of the major factors causing cell damage in the liver. This study investigated the cytoprotective effects and molecular mechanism of tryptanthrin against tert-but...
متن کاملMorin Induces Heme Oxygenase-1 via ERK-Nrf2 Signaling Pathway
BACKGROUND Oxidative stress damages to cells or tissues, however, cellular defense systems including heme oxygenase-1 (HO-1) protects them against oxidative stress. Flavonoid compounds can activate cellular defense mechanisms against oxidative stress and it can reduce cell damages. In the present study, the cytoprotective effects of morin (3,5,7,2',4'-pentahydroxyflavone), in terms of HO-1 enzy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug discoveries & therapeutics
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2011